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A new model of grain growth kinetics in UO2 fuel pellets.
Part 1: Grain growth kinetics controlled by

grain face bubble migration
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Abstract

A new mechanism of the lenticular grain face bubble migration which controls the bubble mobility and determines
the drag force exerted on the grain boundary, is developed. It is shown that besides a more complicated (so called
�lenticular�) shape of grain face bubbles, the migration mechanism of these bubbles might be essentially different from
the intragranular bubbles, owing to their specific location on and interaction with a grain boundary. The model is
validated against tests on grain growth kinetics during steady irradiation exposure and during post-irradiation anneal-
ing of UO2 fuel samples, and allows explanation of a strong retarding effect of irradiation on the grain growth observed
in these tests.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Grain growth is the process by which the mean grain
size of aggregates of crystals increases. The driving force
for this process results from the decrease in free energy
which accompanies reduction in total grain boundary
area. Second-phase inclusions act as pinning agents to
grain boundaries since the attachment of an inclusion re-
duces the total boundary energy by an amount equal to
the specific surface energy times the area occupied by the
inclusions. If the inclusions are relatively immobile, a
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boundary pinned at an inclusion (with the pinning force
Fm) can only move by breaking free. This occurs when
the driving force DG for the boundary migration exceeds
the pinning force nbFm exerted by nb bubbles (per unit
boundary square) on the boundary. In the case of mo-
bile second-phase inclusions (e.g. gas bubbles or pores),
they migrate along with the boundaries, in some circum-
stances giving a boundary migration rate controlled by
the movement of the second-phase particles.

Speight and Greenwood [1] proposed a grain growth
theory that includes the sweeping of entrapped micro-
bubbles by the front of an advancing grain boundary.
The basic postulate of their theory is that small bubbles,
because they exert a minimal drag force on an advancing
grain surface, are swept along with the moving bound-
ary, whereas large bubbles, because of their higher drag,
can detach from the advancing surface.
ed.

mailto:vms@ibrae.ac.ru


M.S. Veshchunov / Journal of Nuclear Materials 346 (2005) 208–219 209
This theory was applied in the VICTORIA code [2]
to modelling grain growth and grain boundary sweep-
ing. Various types of grain boundary pores and bub-
bles (i.e. grain face, edge and corner) which exert
different drag forces owing their different shapes and
sizes were additionally considered in the code following
Rest [3]. In this approach the drag force exerted by an
attached bubble moving along with the boundary is
calculated as the pinning force Fm, evaluated for immo-
bile inclusions. For this reason, the grain boundary
velocity is determined in [2] by the resulting force
DG � nbFm acting on the boundary and the grain
boundary mobility.

Naturally, such an approach is valid only for estima-
tion of the pinning effect on the boundary exerted by
immobile inclusions. In the general case the resulting
drag force can be significantly lower and essentially
dependent on the inclusions� mobility. For this reason,
the drag force should be calculated self-consistently with
the grain boundary velocity as proposed by Nichols [4]
(see Section 2).

However, Nichols analysed a simplified problem of a
single boundary movement representing an average
behaviour of an aggregate of crystals, without consider-
ation of a real size distribution of grains and their
coalescence.

Such a consideration can be done in the framework
of Hillert�s mean-field approach [5] and is performed
in the present paper (Section 2). Besides, an additional
consideration proposed by Rest [3] of various types of
grain boundary pores and bubbles (i.e. grain face, edge
and corner) which exert different drag forces owing to
their different shapes and sizes, is carried out.

Another deficiency of Nichols� analysis [4] is associ-
ated with consideration of a retarding effect using the
standard mechanisms of bubble mobility derived by
Shewmon [6] for intragranular bubbles. However, be-
sides a more complicated (so called �lenticular�) shape
of grain face bubbles, the migration mechanism of these
bubbles might be essentially different from that of the
intragranular bubbles, owing to their specific location
on and interaction with a grain boundary. A new mech-
anism of the lenticular grain face bubble migration
which controls the bubble mobility and determines the
drag force exerted on the grain boundary, will be pre-
sented in Section 3.

After implementation of the new model in the mech-
anistic code MFPR which is designed for modelling fis-
sion product release from irradiated UO2 fuel and
developed in close co-operation between IBRAE (Mos-
cow) and IRSN (Cadarache, France) [7–9], simulation
of the kinetics of UO2 grain growth under steady irradi-
ation conditions (measured in Turnbull�s tests [10]) and
during post-irradiation annealing of UO2 samples with
different irradiation exposures (measured in MacEwan
and Hayayshi�s tests [11]), are performed in Section 4.
2. Bubbles retarding effect in mean field approximation

for grain size distribution

Burke and Turnbull [12] deduced a parabolic rela-
tionship for grain growth kinetics. They modelled migra-
tion of a boundary as occurring by atom transport
across the boundary due to a surface curvature and pres-
sure gradient between grains. In this approach the driv-
ing force applied to the boundary of a spherical grain
with radius Rgb is written as

DG ¼
ncgb
Rgr

; ð1Þ

where cgb is the surface energy of the boundary, and
n � 1–2 is a geometric factor.

Under simplifying assumption Rgr ¼ �Rgr, where �Rgr is
the mean grain radius, the mean grain boundary velocity
is given by equation [12]:

vð0Þgb ¼ dRgr

dt
¼ uDG ¼ M 0

Rgr

; ð2Þ

where u is the grain boundary mobility, andM 0 = ucgbn.
After integration, Eq. (2) results in the parabolic grain
growth.

A more appropriate treatment of the grain growth
problem with consideration of grain coalescence was
performed by Greenwood [13], who modified Eq. (1)
to the form:

DG ¼ ncgb
1

Rc

� 1

Rgb

� �
; ð3Þ

where Rc is the critical radius which varies with time.
Therefore the grain boundary velocity of a spherical
grain with the radius Rgb is given by equation [13]:

vð0Þgb ¼ dRgr

dt
¼ uDG ¼ M 0 1

Rc

� 1

Rgr

� �
. ð4Þ

Grains grow or collapse depending on whether Rgr > Rc

or Rgr < Rc, respectively.
Using Eq. (4), the kinetics become identical with

those for Ostwald ripening of a distribution of second
phase particles, with interphase reactions controlling
the rate at which large particles grow at the expense of
smaller ones. Hillert [5] used previous analysis of Lif-
shitz and Slyozov [14] for Ostwald ripening to obtain
parabolic kinetics for grain growth.

According to Hillert�s theory [5] the critical radius
satisfies equation:

dRc

dt
¼ M 0

8

1

Rc

; ð5Þ

whereas the mean grain radius Rgr is related to the crit-
ical radius Rc by

Rgr ¼ ð8=9ÞRc. ð6Þ
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So, for the mean grain growth velocity this results in:

�vð0Þgb ¼ dRgr

dt
¼ M

1

Rgr

; ð7Þ

where

M ¼ 8M 0

81
¼ 8

81
ucgbn. ð8Þ

Hence, in comparison with the simplified approach [12],
the effective mobility of the mean grain boundary migra-
tion in Eq. (7) turns out to be one order of magnitude
smaller than in Eq. (2).

However, Eqs. (2) and (7) were derived without inter-
granular bubbles taken into consideration. On the other
hand, Nichols [4] considered the retarding effect of bub-
bles on a separately moving grain boundary and showed
that in presence of the attached bubbles the grain
boundary motion is governed by the net force DG � Fnb,
where F is the force applied to a separate bubble and nb
is the surface concentration of bubbles, moving along
with the grain boundary. Therefore the grain boundary
velocity was calculated modifying Eq. (2) as

vgb ¼ uðDG� FnbÞ ¼
vð0Þgb

DG
ðDG� FnbÞ. ð9Þ

Simultaneously, the bubble velocity vb is equal to vgb,
until the bubble is attached to the boundary [1]:

vb ¼ bF ¼ vgb; ð10Þ

where

b ¼ 2Db

kT
; ð11Þ

and Db is the bubble diffusion coefficient (dependent on
the bubble radius Rb).

Using Eqs. (9)–(11) the force F can be calculated as

F ¼
vð0Þgb DG=nb

vð0Þgb þ bDG=nb
; ð12Þ

Therefore, one derives the equation for the grain bound-
ary velocity [4]:

vgb ¼
vð0Þgb bDG=nb

vð0Þgb þ bDG=nb
¼ ub=nb

uþ b=nb
DG. ð13Þ

Nichols� approach can be generalised to a more realistic
description of grain growth with consideration of size
distribution and coalescence of grains. In Hillert�s ap-
proach using the same procedure as for derivation of
Eq. (7) from Eq. (4), one can obtain for the mean grain
velocity a new relationship instead of Eq. (13):

�vgb ¼
8

81

ncgb
Rgr

uðb=nbÞ
uþ ðb=nbÞ

� �
; ð14Þ
or, after substitution of Eq. (8):

�vgb ¼ �vð0Þgb

ðb=nbÞ
�vð0Þgb Rgr

� �
81

8ncgb
þ ðb=nbÞ

0@ 1A. ð15Þ

It is important to note from Eq. (15) that pore (bubble)
parameters control the boundary movement when
ð�vð0Þgb RgrÞ 81

8ncgb
� ðb=nbÞ. Comparing Eq. (15) with Eq.

(13) one can see that in the advanced model (with appli-
cation of the Hillert�s approach to consideration of grain
size distribution) this occurs significantly earlier when
Rgr � 0.1

ðb=nbÞncgb

�vð0Þ
gb

, i.e. at a grain size one order of magni-

tude smaller than in the simplified approach [4].

To take into account different kinds of bubbles on the
grain boundary, i.e. face (f), edge (e) and corner (c) bub-
bles, relationship similar to Eq. (10) should be applied to
each kind of bubbles [3]:

vgb ¼ vf ¼ bfF f ¼ ve ¼ beF e ¼ vc ¼ bcF c; ð16Þ
therefore,

F e ¼
bf
be

F f ; F c ¼
bf
bc

F f . ð17Þ

The net force acting on the boundary takes the form:

DG� nfF f � neF e � ncF c ¼ DG� F f nf þ ne
bf
be

þ nc
bf
bc

� �
;

ð18Þ
this results in the following relationship generalising
equation (13):

vgb ¼
vð0Þgb

1þ
vð0Þgb

DG
ðnfb�1f þ neb

�1
e þ ncb

�1
c Þ

. ð19Þ

Finally, for the mean grain boundary velocity one ob-
tains in a similar way to derivation of Eq. (15):

�vgb ¼
vð0Þgb

1þ
81vð0Þgb Rgr

8ncgb
nfb

�1
f þ neb

�1
e þ ncb

�1
c

	 
 . ð20Þ
3. New mechanism for grain face bubble migration

and drag force exerted on a moving boundary

In accordance with [4,6], the mobility of a spherical
intragranular bubble is determined by various migration
mechanisms:

b / R�n
b ; ð21Þ

where n = 3 for the mechanisms of lattice diffusion and
gas phase transport, and n = 4 for the surface diffusion
mechanism.

Presumably the same migration mechanisms can
be also applied to the grain face bubbles with some
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Fig. 1. Determination of the drag force exerted by attached
lenticular bubble on moving grain boundary.
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renormalisation of the proportionality coefficient in Eq.
(21), owing to amore complicated lenticular form of these
bubbles (see below Section 3.3). However, a more pro-
found difference from free intragranular bubbles arises
on grain faces, which can significantly reduce the inter-
granular bubble mobility and thus migration velocity of
the grain boundary. This new rate determining mecha-
nism of bubblemigrationwill be presented in this Section.

3.1. Phenomenological consideration

Before presenting a more detailed �microscopic�
consideration of the grain boundary migration with at-
tached bubbles, a phenomenological approach to calcu-
lation of the retarding force exerted by bubbles on the
moving boundary will be presented.

As above mentioned, the driving force for the bound-
ary migration can be derived from the pressure gradient
across the boundary arising from its curvature given by
Eq. (1). This pressure gradient between the two adjacent
grains provides different boundary conditions also for
gas bubbles in these grains; in particular, an additional
external hydrostatic pressure pext = DG is applied to
the spherical segment of the lenticular bubble surface
in the shrinking grain.

In order to clarify the nature of the drag force exerted
on the grain boundary by an attached bubble, at first a
simplified limiting case of a complete equilibrium of the
lenticular bubble with both grains (shrinking and grow-
ing) separated by the boundary under steady-state con-
ditions, will be considered.

In this limiting case

Dp2 
 pb �
2cs
R2

¼ 0; ð22Þ

Dp1 
 pb �
2cs
R1

� DG ¼ 0; ð23Þ

where pb is the internal bubble pressure, R1 and R2 are
the curvature radii of the two surface segments of the
bubble.

One can see from Eqs. (22) and (23) that the curva-
ture radii of the two bubble surfaces are different, this in-
duces different contact angles h1 and h2 with the grain
boundary:

R1 � sin h1 ¼ R2 � sin h2 ¼ qb; ð24Þ

where qb is the projected radius of the bubble in the
plain of the boundary.

Assuming a balance between the surface tension
forces in the plane of the grain boundary under stea-
dy-state conditions:

cgb ¼ csðcos h1 þ cos h2Þ; ð25Þ

one can calculate a net force exerting by the bubble on
the grain boundary in the normal to the grain boundary
direction (see Fig. 1):
2pqcsðsin h2 � sin h1Þ ¼ F b. ð26Þ

Substituting Eqs. (22)–(25) in Eq. (26), one gets:

F b ¼ DG � pq2
b; ð27Þ

and therefore, in accordance with Eq. (9), the driving
force for the grain boundary migration is reduced pro-
portionally to the reduction of the grain boundary area
owing to its coverage with bubbles:

DG0 ¼ DG� F bnb ¼ DGð1� nb � pq2
bÞ. ð28Þ

The above presented consideration of the bubble equi-
librium with the two grains can be justified only in the
case when the rate determining process of bubble mobil-
ity is infinitely fast in comparison with the grain bound-
ary migration. In a more general case of a finite bubble
mobility, a complete equilibrium between the bubble
and the two grains is not attained, hence Eqs. (22) and
(23) are not anymore valid. It is straightforward to show
that in order to uphold a coherent migration of the grain
boundary and the attached bubble in this case, the
values Dp1 and Dp2 become non-zero and obey the
relationship:

Dp1 ¼ pb �
2cs
R1

� DG ¼ �Dp2 ¼
2cs
R2

� pb ¼ e > 0. ð29Þ

Indeed, during a time interval dt the grain boundary
moves over a distance vgbdt. If the bubble is �frozen� at
its position, the volume of the upper part of the bubble
(see Fig. 2) will be decreased by a value dV ¼ pq2

bvgb dt,
whereas the volume of the lower part will be increased
by the same value dV. In order to sustain the bubble
migration with the grain boundary velocity vgb, vacancy
fluxes along the upper and lower surfaces of the grain
boundary, J ð1Þ

v and J ð2Þ
v , should compensate these volume

variations:

J ð1Þ
v 2pqbXdt ¼ �J ð2Þ

v 2pqbXdt ¼ dV ¼ pq2
bvgb dt; ð30Þ

where X is the vacancy volume. It is assumed that each
of the vacancy fluxes (J ð1Þ

v or J ð2Þ
v ) occurs in a thin surface

layer with a thickness w � 0.5 nm of the corresponding



Fig. 2. Determination of vacancy fluxes along the grain
boundary in two adjacent grains providing relocation of a
lenticular bubble coherently with the grain boundary.
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grain (grain 1 or grain 2), characterised by a relatively
high self-diffusion coefficient Dgb.

These fluxes will be calculated in the following Sec-
tion 3.2, nevertheless, from the physical point of view
(confirmed by calculations presented below) it is clear
that the values of J ð1Þ

v and J ð2Þ
v are determined by the

pressure differences Dp1 and Dp2, respectively, which
should obey condition Dp1 = �Dp2, Eq. (29), in order
to sustain relationship J ð1Þ

v ¼ �J ð2Þ
v , Eq. (30).

Eqs. (24)–(26) are still valid for the considered case of
a non-equilibrium bubble with the steady-state lenticular
shape, and along with Eq. (29) determine the retarding
force:

F b ¼ 2pqcsðsin h2 � sin h1Þ ¼ pq2
bðDGþ 2eÞ. ð31Þ

Substitution Eq. (31) in Eq. (9) results in:

vgb ¼ ugb DGð1� nb � pq2
bÞ � 2enb � pq2

b

� �
. ð32Þ

Superposition of Eqs. (32) and (30) with explicitly calcu-
lated fluxes J ð1Þ

v and J ð2Þ
v as a function of e will finally

determine the migration of the grain boundary with at-
tached bubbles.

The same result, Eq. (32), derived in the present sub-
section in phenomenological approach (i.e. by consider-
ation of mechanical forces, acting on the boundary and
bubbles), can be obtained in a more accurate micro-
scopic approach based on self-consistent calculation of
vacancy fluxes across and along the grain boundary,
which will be presented in the following Section 3.2.

3.2. Microscopic consideration

In accordance with Cole et al. [15], migration of a
grain boundary of a growing grain takes place in steps
of one interatomic spacing a as atoms transfer from
the neighbouring grain across the boundary under the
pressure difference DG across the boundary:

vð0Þgb ¼ 2taX
kT

DG exp � Q
kT

� �

 ugbDG; ð33Þ
where t is the atomic oscillation frequency on the grain
boundary, Q is the activation energy for self-diffusion in
the grain boundary, X is the atomic volume. The grain
boundary mobility ugb ¼ 2taX

kT expð� Q
kTÞ, can be also eval-

uated following Burke and Turnbull [12] as

ugb ¼
DgbX
2wkT

; ð34Þ

where 2w � 1 nm is the thickness of the grain boundary,
Dgb is the self-diffusion coefficient in the grain boundary.

The above described process of atomic jumps can be
equivalently considered as translations of vacancies
from the growing grain to the adjacent one with the
same rate as translations of atoms in the opposite direc-

tion. The corresponding flux of vacancies eJ ð0Þ
v in the nor-

mal to the grain boundary direction is uniform over the
grain boundary surface (with the total area S) and thus
determines the grain boundary relocation during the

time interval dt, in accordance with the following rela-

tionship: eJ ð0Þ
v XS dt ¼ S dx. Therefore, the grain bound-

ary migration velocity vð0Þgb ¼ dx=dt can be represented
in the form vð0Þgb ¼ eJ ð0Þ

v X, and thus:

eJ ð0Þ
v ¼ ugbDG=X. ð35Þ

In the presence of attached bubbles with the surface cov-
erage nb and mean projected radius qb, the vacancy flux
takes place across the reduced surface of the grain
boundary Sð1� nbpq2

bÞ. In the limiting case (corre-
sponding to an infinite bubble mobility, or e ! 0), when
the lenticular bubble attains equilibrium with both
grains separated by the boundary (see Eqs. (22) and
(23)), the vacancy flux is still uniform over the reduced
grain boundary surface, and thus, Eq. (35) can be used
in the balance equation:

vð0Þgb S ¼ eJ ð0Þ
v XSð1� nbpq2

bÞ. ð36Þ

Therefore, in this case the grain boundary velocity is cal-
culated as

vð0Þgb ¼ ugbDGð1� nb � pq2
bÞ; ð37Þ

in agreement with Eq. (28).
In a more general case of a limited bubble mobility

when a complete equilibrium between the bubble and
the grains is not attained and e > 0, a spatial variation
of the vacancy chemical potential over the grain bound-
ary faces takes place. On the one hand, this chemical po-
tential variation induces the vacancy fluxes to (from) the
bubble along the upper (lower) surface of the grain
boundary, J ð1Þ

v and J ð2Þ
v , introduced in Eq. (30). On the

other hand, the pressure drop across the boundary be-
comes also non-uniform over the grain face area; this
modifies Eq. (37). In order to calculate the total vacancy
flux across the boundary in this case, one should self-
consistently consider the vacancy transport along and
across the grain boundary, on the base of calculation
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of the spatial variation of the vacancy chemical
potential.

As shown by Speight and Beere [16], variation of the
surface chemical potential l(r) = rnn(r)X in a grain re-
flects exactly the steady state distribution of normal
stresses over the grain boundary area unoccupied by
bubbles. In the currently considered problem with a
moving grain boundary under pressure difference across
the boundary, such a conclusion should be generalised
and independently applied to each of the two adjacent
grains, l1;2ðrÞ ¼ rð1;2Þ

nn ðrÞX. The integral of these stresses
over the area (with the mean radius Rc � (pnb)

�1/2) asso-
ciated with one bubble must equal the total load applied
to each face of the grain boundary. Hence, following
[16], one obtains:

X�1
Z Rc

qb

l1;2ðrÞ2prdr ¼ r1;2pR2
c �

2cs
R1;2

� pb

� �
pq2

b;

ð38Þ

where the first term on the r.h.s. arises from the normal
stresses r1,2 at each of two surfaces of the grain bound-
ary in the absence of attached bubbles. In the presently
considered case these stresses uphold the pressure gradi-
ent DG across the grain boundary, i.e.

r2 ¼ r1 þ DG. ð39Þ

The second term on the r.h.s. of Eq. (38) expresses the
force which the bubble surface tension exerts on the
boundary. This term can be calculated as the integral
of the normal stress on the lenticular bubble
surface l1;2ðR1;2; hÞ ¼ rð1;2Þ

nn ðhÞX ¼ 2cs
R1;2

� pb
� �

X over the

corresponding surface segment of the bubble:R
rð1;2Þ
nn ðR1;2ÞdS1;2 ¼ 2cs

R1;2
� pb

� �
pq2

b.

As illustrated in Fig. 3, the chemical potential gradi-
ents along the grain face surfaces, $Sl1 and $Sl2, deter-
mine the vacancy surface fluxes J ð1Þ

v and J ð2Þ
v , introduced

in Eq. (30), whereas the chemical potential drop across
the grain boundary dl(r) = l2(r) � l1(r) determines the
vacancy flux across the grain boundary:eJ vðrÞ ¼ ugbdlðrÞ=X2. ð40Þ
Grain 1 

( (r)]r)Jv 12

~
µ–∝

(r)J Sv 1
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boundary
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[µ
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(2) ∆∝

2

(2)
θSI )(π – 

Fig. 3. Schematic representation of vacancy fluxes along and
across the grain boundary.
Integrating this flux over the grain boundary area unoc-
cupied by bubbles and using Eq. (38) one can calculate
the grain boundary velocity:

vgb ¼
ugb

XpR2
c

Z Rc

qb

ðl2ðrÞ � l1ðrÞÞ2prdr

¼ ugbnb ðr2 � r1ÞpR2
c �

2cs
R2

� 2cs
R1

� �
pq2

b

� �
. ð41Þ

The second term on the r.h.s. of Eq. (41) is calculated
from Eq. (29):

2cs
R2

� 2cs
R1

¼ 2e þ DG. ð42Þ

Substitution of Eqs. (39) and (42) in Eq. (41) results in:

vgb ¼ ugb DGð1� nb � pq2
bÞ � 2enb � pq2

b

� �
; ð43Þ

which exactly coincides with Eq. (32).
An additional relationship between vgb and e can be

obtained from the balance equation, Eq. (30), if the sur-
face vacancy fluxes J ð1Þ

v and J ð2Þ
v are properly ascertained.

These fluxes obey the continuity equations on each face
of the grain boundary, which in the system of coordi-
nates moving along with the grain boundary take the
form:

~rs �~J
ð1;2Þ
v � eJ vðrÞ � vgbX

�1 ¼ 0;

or

DgbwX
kT

r2
sl1;2 �

ugbðl2 � l1Þ
X

� vgb ¼ 0; ð44Þ

with the boundary conditions:

dl1;2

dr

� �
r¼Rc

¼ 0 and l1;2ðqbÞ ¼
2cs
R1;2

� pb

� �
X. ð45Þ

It is straightforward to see that integration of Eq. (44)
over the surface non-occupied with the bubbles, directly
results in the first part of Eq. (41), if Eq. (30) is valid.

Solution of Eqs. (44) and (45) is presented in Appen-
dix A and determines the vacancy fluxes at the bubble
surface:

J ð1Þ
v ¼ �J ð2Þ

v ¼ DgbwX
2kT

DGþ 2e � vgb
ugb

� �
� v

K1ðvqbÞI1ðvRcÞ � I1ðvqbÞK1ðvRcÞ
I0ðvqbÞK1ðvRcÞ þ K0ðvqbÞI1ðvRcÞ

; ð46Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ugbkT=DgbwX

p
, and I0,1(x) and K0,1(x) rep-

resent the first and the second modified Bessel functions
of the zeroth and first kind, respectively.

Substitution of Eq. (46) in Eq. (30) results in the
additional relationship for the grain boundary velocity:

vgb ¼ ðDGþ 2eÞpq2
b

DgbwXvuðvqb; vRcÞ
pkTq3

b

�
� 1þ DgbwXvuðvqb; vRcÞ

kTqbugb

� ��1
#
; ð47Þ
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where uðvqb; vRcÞ ¼
K1ðvqbÞI1ðvRcÞ � I1ðvqbÞK1ðvRcÞ
I0ðvqbÞK1ðvRcÞ þ K0ðvqbÞI1ðvRcÞ

.

In the meaningful limit Rc � w, qb P w, one has with
a very good accuracy u(vqb,vRc) � 1, until qb < Rc:

vgb ¼ ðDGþ 2eÞpq2
b

DgbwXv
pkTq3

b

1þ DgbwXv
kTqbugb

� ��1
" #

. ð48Þ

Superposition of Eqs. (43) and (48) allows exclusion of
the parameter e and final calculation of the grain bound-
ary velocity:

vgb ¼
ugbub=nb

ugb þ ub=nb
DG; ð49Þ

where the bubble mobility is presented by the expression
in brackets of Eq. (48):

ub ¼
DgbwXv
pkTq3

b

1þ DgbwXv
kTqbugb

� ��1

. ð50Þ

In the limit qb ! Rc, corresponding to complete cover-
age of the grain face by bubbles, u(vqb,vRc)! 0 in a
steep manner, therefore, the grain boundary velocity in
Eq. (47) also turns to zero, vgb ! 0, in a qualitative
agreement with the prediction of the simplified model,
Eq. (28).

A further simplification of Eq. (50) can be attained
using evaluation of the grain boundary mobility ugb in
Eq. (34) resulting in v � w�1. In this case the bubble
mobility can be approximated as

ub ¼
DgbX
pkTq3

b

1þ 2w
qb

� ��1

� DgbX
pkTq3

b

. ð51Þ
3.3. Discussion

In derivation of Eqs. (49) and (50) it was implicitly
assumed that the surface diffusion of uranium atoms
along the two segments (upper and lower) of the bubble
surface disconnected by the grain boundary, was fast en-
ough to redistribute in the bubble all vacancies absorbed
from the upper surface of the grain boundary (flux J ð1Þ

v )
and desorbed to the lower one (flux J ð2Þ

v ), in order to sus-
tain its steady-state lenticular shape in the course of
grain boundary migration.

This assumption can be explicitly grounded if one
compares two expressions for the bubble mobility by
the new mechanism, Eq. (51), and by the bubble surface
diffusion mechanism. For the spherical intragranular
bubbles the latter (which was roughly evaluated in [6])
takes the form (see Appendix B):

us �
3DsaX

2pkTR4
b

; ð52Þ

where Ds is the surface diffusion coefficient of uranium
atoms over the bubble surface, Rb is the radius of the
spherical bubble, a � w is the thickness of the surface
layer.

For the lenticular grain face bubble the mobility by
the surface diffusion mechanism (i.e. under assumption
that the atomic transport between the two segments of
the bubble surface across the grain boundary is not a
rate-limiting process) is presented by a similar to Eq.
(52) relationship, derived in Appendix B:

us �
3DswX
2pkTq4

b

sin4h0
1� cos3h0

� 3DswX
4pkTq4

b

; ð53Þ

where h0 � h1 � h2 � 50�.
Therefore, comparing Eqs. (51) and (53) one can see

that ub
us
� Dgb

Ds

qb
w . From analysis of experimental data for

Dgb [17] and for Ds [18,19] one can conclude that Ds ex-
ceeds Dgb by 1–2 orders of magnitude in a wide range of
temperatures above 1000 K, increasing with tempera-
ture. At higher temperatures T � 2000 K, when the
grain growth becomes noticeable, the ratio Ds/Dgb at-
tains three orders of magnitude. Therefore, for the prac-
tical interval of bubble sizes w 6 qb 6 103w, i.e. from
�1 nm up to �1 lm, the ratio ub/us is still small.

This confirms that the new mechanism of bubble
migration is significantly slower than the standard bub-
ble surface diffusion mechanism and thus is the rate
determining step in the migration process (under
assumption that the two other mechanisms of bubble
migration by gas transport in the bubble and volume dif-
fusion in the surrounding solid matrix are much slower).

In this case diffusion fluxes of uranium atoms ~I sðhÞ
over the two surfaces of the lenticular bubble should
provide relocation of each surface segment with the
velocity vb = vgb, in accordance with the relationship
valid for spherical surfaces [20] and thus also for any
segment of a spherical surface:

~vb �~n ¼ X ~rs �~I s; ð54Þ

where~nðhÞ is the unit vector in the normal to the surface
direction.

Solution of Eq. (54) for the absolute value of the vec-
tor~I sðhÞ directed along the bubble surface is

I ð1;2Þs ðhÞ ¼ �ðvbR1;2=2XÞ sin h. ð55Þ

Comparing Eq. (55) with Eq. (30), one can see that the
flux matches are identically satisfied on the contact line
between the bubble and the grain boundary (see Fig. 3):

J ð1Þ
v ¼ pq2

bvgb=2pqbX ¼ �I ð1Þs ðh1Þ; ð56Þ

and

J ð2Þ
v ¼ �pq2

bvgb=2pqbX ¼ I ð2Þs ðp � h2Þ; ð57Þ

where R1 � sin h1 ¼ R2 � sin h2 ¼ qb, in accordance with
Eq. (24).

Therefore, uranium atoms transferred from one grain
into another by the atomic jumps under the chemical
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potential gradient across the grain boundary, are redis-
tributed among the grain boundary and the attached
bubbles by the surface diffusion along the grain bound-
ary (Dgb). Further transport of atoms along the bubble
surface (disconnected into two segments by the grain
boundary) is sustained by a more rapid diffusion process
on the bubble surfaces (Ds), which preserves the bubble
steady-state shape in the course of coherent relocation of
the grain boundary and the attached bubble.
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Fig. 4. Simulation of the Turnbull�s tests [10] with the MFPR
code using the standard mechanism (bubble surface diffusion)
for the mobility of grain face bubbles.
4. Model validation

The new grain growth model was implemented in the
MFPR code [7–9] and used to simulate the data of stea-
dy irradiation tests of Turnbull [10]. In these experi-
ments the grain growth kinetics of uranium dioxide
under steady irradiation conditions was studied. Small
cylindrical specimens 10 mm long and 3 mm diameter
were prepared from 2% enriched uranium dioxide of
near theoretical density. The fuel samples were irradi-
ated at T = 2023 K for period of 2, 4 and 6 months in
UKAEA reactor DIDO in a flux of �2.4 · 1017 thermal
neutrons/m2 s. There were three types of samples with
the initial grain diameter dgr = 7 lm (specimens A and
B) and 40 lm (specimen C), the latter being produced
by preliminary annealing of specimens A during 72 h
at T = 1973 K in hydrogen. Specimens B and C were
pre-irradiated to 0.02% burn-up at 353 K. So, the
following identification of the specimens is used:

• specimen A, 7 lm starting grain size;
• specimen B, 7 lm starting grain size, pre-irradiated to
0.02% burn-up at 353 K;

• specimen C, 40 lm starting grain size, pre-irradiated
to 0.02% burn-up at 353 K.

Examination of large-grained specimen C showed the
unchanged average grain size, whereas specimens A and
B exhibited identical grain growth characteristics with
the grain size increasing from 7 lm to 18 lm after
6 months irradiation.

In order to simulate the tests with the MFPR code, at
first parameters of Eq. (48) for the normal grain growth
kinetics in non-irradiated fuel represented in the stan-
dard form:

vð0Þgb ¼ v0
d0
dgr

� �n

expð�Egb=T Þ; ð58Þ

were fitted to reproduce the out-of-pile annealing behav-
iour of specimen C. Since the density of the samples was
close to theoretical one, the parabolic kinetics for nor-
mal grain growth with parameters n = 1, v0 = 1.4 m/s,
d0 = 7 lm and activation energy Egb = 44200 K recom-
mended by Speight–Greenwood [1] was assumed in
calculations.
The MFPR code allows mechanistic calculation of
fission gas atoms and intragranular bubbles migration
to and sweeping by moving grain boundaries, which feed
formation and growth of intergranular bubbles. Various
types of intergranular bubbles (grain face, edge and cor-
ner) with different drag forces are considered as de-
scribed in Section 2. However, the new mechanism of
the intergranular bubble migration is currently applied
only to the face bubbles, whereas migration of the
peripheral edge and corner bubbles is considered in the
standard approach (i.e. by the surface diffusion mecha-
nism). Apparently this turns out in some underestima-
tion of the peripheral bubbles input in the total drag
force exerted on the grain boundary. Extension of the
new model to consideration of this effect was recently
carried out and, after implementation in the code, im-
proved results will be published elsewhere. The mean
surface concentration of face bubbles was estimated as
�4 · 1010 m�2 from the post-test fracture surface image
presented in [10] and used in the calculations as a fixed
value, whereas variation of their mean size owing to
absorption of gas atoms from grains was calculated by
the code.

The MFPR code with the fixed parameters of the new
model was applied to simulation of grain growth of the
specimens A, B and C under irradiation. In the standard
approach using bubble mobility us determined by the
bubble surface diffusion mechanism, Eq. (52), calcula-
tions strongly overpredict the measured grain growth
for all three specimens, Fig. 4.

In the new approach the bubble mobility ~u was calcu-
lated as the minimum between the two values ub and us
determined by the grain boundary diffusion and bubble
surface diffusion mechanisms, Eqs. (51) and (53), respec-
tively, i.e. ~u ¼ minðub; usÞ. Comparing parameters of
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Fig. 6. Simulation of the Turnbull�s tests [10] with the MFPR
code using modification of the new model for the mobility of
grain face bubbles with DðlÞ

gb ¼ 4� 10�6 expð�35250=T Þ m2/s.
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Eqs. (33) and (34) with the above presented parameters
of Eq. (58), one can estimate the value of the grain
boundary diffusion coefficient Dgb from Eq. (34) and
then use this value for determination of the bubble
mobility ub in Eq. (51).

In this approach the new model predicts a rather
good agreement for the samples B and C and slightly
overpredicts the growth of the sample A, Fig. 5. How-
ever, as indicated by Turnbull [10], his result concerning
negligible effect of pre-irradiation on grain growth (i.e.
identical grain growth of the samples A and B) was in
contradiction with the test of MacEwan and Hayashi
[11], who reported that a similar to specimen B �cold�
pre-irradiation of samples was sufficient to arrest grain
growth at high temperatures �2073 K. In this respect
the new model is in qualitative agreement with the latter
observations.

It should be noted that the above estimated value of
the grain boundary diffusion coefficient Dgb � 4 ·
10�6 exp(�44200/T) m2/s (obtained by comparison of
Eqs. (33) and (34) with Eq. (58)) at the test temperature
�2023 K turns to be one order of magnitude smaller
than the value directly measured by Alcock et al. [17].
This contradiction can be explained by an assumption
that the grain boundary diffusivity (as well as other
material properties) may change with burnup, or by
an additional assumption that the diffusivity along
the grain boundary measured in [17], DðlÞ

gb � 4�
10�6 exp(�35250/T) m2/s, differs from the diffusivity
across the grain boundary evaluated in Eq. (34)
following Burke and Turnbull [12], DðpÞ

gb �
4� 10�6 expð�44200=T Þ m2/s.

Under the latter assumption Eq. (50) takes the form

ub ¼
DðlÞ
gb
wXv

pkTq3
b

, where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ugbkT=D

ðlÞ
gbwX

q
and ugb �

DðpÞ
gb

X

2wkT ,
i.e. v ¼ 1
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðpÞ

gb =D
ðlÞ
gb

q
. Therefore, instead of Eq. (51) one

gets a modified expression for the bubble mobility:

ub �
X

pkTq3
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðpÞ
gbD

ðlÞ
gb

q
. ð59Þ

In this case the model predictions, Fig. 6, are not as
good as in the previous case, but are still reasonable,
taking into account accuracy limits of the tests [10]. Nev-
ertheless, even in this case a substantial improvement of
the code predictions in comparison with the standard
approach, Fig. 4, is apparent.

Further improvement of calculation results can be
apparently attained by additional consideration of solid
precipitates formed on the grain boundaries under irra-
diation, which exert an additional drag force on the
grain boundary unaccounted in the current model.

Being applied to the tests of MacEwan and Hayashi
[11], the model allows a reasonable simulation of the ob-
served grain growth during post-irradiation annealing of
uranium dioxide. In these tests the effect of prior expo-
sure to irradiation at temperature below 673 K on sub-
sequent grain growth of UO2 samples with densities
from 94% to 96% of theoretical density at 2073 K during
24 h was studied, as shown in Fig. 7. Growth was re-
duced in all irradiated specimens, with nearly complete
inhibition occurring by 4 · 1019 fissions/cm3 (corre-
sponding to 80 days of irradiation).

In MFPR calculations the normal grain growth
velocity was adjusted to the test data for non-irradiated
samples, whereas all further calculations for pre-irradi-
ated samples were performed with the fixed set of the
model parameters, similar to that used in calculations
in Fig. 6. Results of these calculations are presented in
Fig. 7 (solid line) and demonstrate a reasonable agree-
ment with experimental data.
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5. Conclusions

A new model for the grain growth in irradiated and
non-irradiated UO2 pellets is developed.

As the first step of the new model development, Nic-
hols� approach [4] to consideration of the drag force ex-
erted by attached bubbles and pores on migrating grain
boundaries is combined with supplementary consider-
ation of grains coalescence within Hillert�s mean field
approach [5]. It is shown that the boundary migration
rate becomes controlled by the movement of the sec-
ond-phase particles with significantly smaller sizes than
predicted in the simplified approach [4]. An additional
consideration recommended by Rest [3] of various types
of grain boundary pores and bubbles (i.e. grain face,
edge and corner) which exert different drag forces owing
to their different shapes and sizes, is performed in the
model.

On the other hand, Nichols� analysis [4] is based on
consideration of retarding effect using the standard (sur-
face diffusion) mechanisms of bubble mobility derived
for intragranular bubbles. This mechanism was re-con-
sidered in the present paper taking into account a more
complicated, lenticular, shape of the grain face bubbles.
However, besides this, migration mechanism of the grain
face bubbles might be essentially different from the intra-
granular bubbles, owing to their specific location on and
interaction with a grain boundary. The new mechanism
of the lenticular grain face bubble migration is associ-
ated with vacancy fluxes over the grain boundary sur-
faces to the bubble, which afford coherent relocation
of the grain boundary-bubble complex. The calculated
mobility of the grain face bubble is characterised by a
slower dependence on its projected radius, / q�3

b , in
comparison with the surface diffusion mechanism,
/ q�4

b , which sustains its steady-state lenticular shape
in the course of bubble migration. For this reason, the
new mechanism becomes the rate controlling step for
bubbles migration in a wide range of their radii from
�1 nm to �1 lm, and correspondingly, determines the
drag force exerted by bubbles on the grain boundary.

The model is implemented in the MFPR code which
is designed for modelling fission product release from
irradiated UO2 fuel, and validated against tests on grain
growth kinetics during steady irradiation exposure [10]
and during post-irradiation annealing [11] of fuel sam-
ples. Results of calculations are in a reasonable agree-
ment with the test data and allow explanation of the
strong retarding effect of irradiation on the grain growth
observed in these tests.
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Appendix A

In this appendix will be searched the solution of Eq.
(44):

DgbwX
kT

r2
sl1 þ

ugbðl2 � l1Þ
X

� vgb ¼ 0; ðA:1Þ

DgbwX
kT

r2
sl2 �

ugbðl2 � l1Þ
X

þ vgb ¼ 0; ðA:2Þ

with the boundary conditions, Eq. (45):

dl1;2

dr

� �
r¼Rc

¼ 0 and l1;2ðqbÞ ¼
2cs
R1;2

� pb

� �
X.

ðA:3Þ

The sum of Eqs. (A.1) and (A.2) results in the Laplace
type equation for a variable l1 + l2:

Dsðl1 þ l2Þ ¼ 0;

which under condition of a cylindrical symmetry around
a bubble in its occupation region r 6 Rc has a general
solution:

l1 þ l2 ¼ Aþ B ln r; ðA:4Þ
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whereas the difference of Eqs. (A.1) and (A.2) results in
the Helmholtz type equation for a variable
x(r) = l2 � l1 � vgbX/ugb:

Dsx� v2x ¼ 0; ðA:5Þ

with v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ugbkT=DgbwX2

q
, which has a general solution

with the cylindrical symmetry:

x ¼ CI0ðvrÞ þ DK0ðvrÞ;
or

l2 � l1 ¼ vgbX=ugb þ CI0ðvrÞ þ DK0ðvrÞ. ðA:6Þ

Superposition of Eqs. (A.4) and (A.6) yields the
searched solution:

2l1 ¼ Aþ B ln r� vgbX=ugb �CI0ðvrÞ �DK0ðvrÞ; ðA:7Þ
2l2 ¼ Aþ B ln rþ vgbX=ugb þCI0ðvrÞ þDK0ðvrÞ; ðA:8Þ

where the constants are found out by substitution of
Eqs. (A.7) and (A.8) in the boundary conditions, Eq.
(A.3):

B ¼ 0; A ¼ 2
cs
R1

þ cs
R2

� pb

� �
X ¼ �DGX;

D ¼ C
I1ðvRcÞ
K1ðvRcÞ

;

C ¼

2cs
R2

� 2cs
R1

� vgb=ugb

I0ðvqbÞ þ K0ðvqbÞI1ðvRcÞ=K1ðvRcÞ

¼ DGþ 2e � vgb=ugb
I0ðvqbÞ þ K0ðvqbÞI1ðvRcÞ=K1ðvRcÞ.

ðA:9Þ
Appendix B

In this appendix the mobility of a lenticular grain face
bubble by the surface diffusion mechanism is calculated,
which is valid under assumption that the atomic trans-
port between the two segments of the bubble surface
across the grain boundary is not a rate-limiting process.

Let us consider two bubbles: a lenticular bubble con-
sisting of two segments of spherical surfaces with close
radii R1 � R2 and contact angles h1 � h2 � h0 � arc-
cos(cgb/2cs) � 50�, and a spherical bubble with a radius
R � R1 � R2, moving with the same velocity vb. A simi-
lar flux distribution over the lenticular bubble surface
and over two surface segments of the spherical bubble
in the range 0 < h < h1 and 0 < p � h < h2, which pro-
vides relocation of these two bubbles with the same
velocity vb (see Eq. (54)), can be induced by a similar
normal stress distribution rrr(h) over these surfaces in
the surrounding solid matrix:

I sðhÞ ¼ � Dsa
XkT

rslsðhÞ ¼ �Dsa
kT

rsrrrðhÞ; ðB:1Þ

where ls(h) = l0 + rrr(h)X, and rsðcos hÞ ¼ R�1 sin h.
Comparing Eq. (B.1) with Eq. (55), one can see that:

rrrðhÞ ¼
vbR2kT
2DsaX

cos h. ðB:2Þ

This implies that the net external force acting on the
spherical bubble is equal to:

F sph ¼
Z p

0

rrr cos hdS ¼ 2pR4kT
3DsaX

vb; ðB:3Þ

whereas the net force acting on the lenticular bubble sur-
face is equal to:

F lent ¼
Z h1

0

rrr cos hdS þ
Z p

p�h2

rrr cos hdS

� 2pR4kT ð1� cos3h0Þ
3DsaX

vb �
2pq4

bkT
3DsaX

ð1� cos3h0Þ
sin4h0

vb.

ðB:4Þ

Therefore, for the bubble mobility ub = vb/F one obtains
the above presented Eqs. (52) and (53).

The data for the surface diffusion coefficient compiled
by Maiya [18] and Matzke [19] give the following rela-
tionship for the surface diffusion coefficient of uranium
atoms:

Ds ¼ 50 expð�450; 000=RT Þðm2=sÞ; ðB:5Þ

with 1200 �C < T < 1800 �C and R in Jmol�1K�1.
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